Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Juli 2005

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 9. September 2005

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Tonbanddienst der Post:	0512/1552
⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

3
4
5
6
7
10
12
15
18
20
24
28
30
33
36
39
42
45
47
50
53
56
59
61
65
67
07
70

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäss IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäss IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid
NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

Gl.JMW Gleitender Jahresmittelwert

MMW Monatsmittelwert
TMW Tagesmittelwert

IGL 8-MW Maximaler Achtstundenmittelwert laut Immissionsschutzgesetz Luft

Max 8-MW Maximaler Achtstundenmittelwert (gleitend)
Max 3-MW Maximaler Dreistundenmittelwert (gleitend)

Max 1-MW Maximaler Einstundenmittelwert

Max HMW Maximaler Halbstundenmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

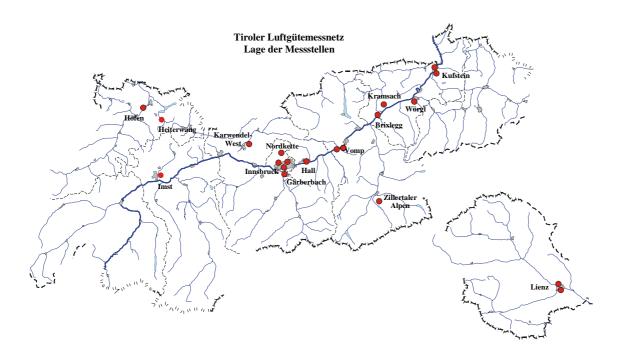
als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen

VDI Verein Deutscher Ingenieure

2. FVO 2. Verordnung gegen forstschädliche Luftverunreinigungen


BGBl.Nr. 89/1984 (2. Forstverordnung)

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (IG-L,BGBl. 115/97)

n.a. nicht ausgewertet

	резі	UCKU	NGSLISTE	1			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	C
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	995 m	-	•/-	•	•	-	-
Imst – Imsterau	726 m	-	•/-	•	•	-	-
Karwendel – West	1730 m	-	-/-	-	-	•	-
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	580 m	•	•/•	•	•	-	
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-
Nordkette	1950 m	-	-/-	•	•	•	-
Gärberbach – A13	680 m	-	•/-	•	•	-	-
Hall in Tirol – Münzergasse	560 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	-
Vomp – An der Leiten	520 m	-	•/-	•	•	-	-
Zillertaler Alpen	1930 m	-	-/-	-	-	•	-
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-
Kramsach – Angerberg	600 m	-	-/-	•	•	•	-
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	-
Kufstein – Praxmarerstrasse	500 m	•	•/-	•	•	-	-
Kufstein – Festung	560 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	
Lienz – Sportzentrum	670 m	_	-/-	_	_	•	-

Kurzübersicht über die Einhaltung von Grenzwerten (für Ozon und Stickstoffdioxid auch Zielwert) Juli 2005

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN Lärchbichl					Z P M	
HEITERWANG Ort / B179						
IMST Imsterau		I_P		Ö		
KARWENDEL West					Z P M	
INNSBRUCK Andechsstrasse		I_P			Z P M	
INNSBRUCK Fallmerayerstrasse				Ö		
INNSBRUCK Sadrach					Z P M	
NORDKETTE					Z P M	
GÄRBERBACH A13		I_{P}		Ö		
HALL IN TIROL Münzergasse		I_P		Ö		
VOMP Raststätte A12		I_P		I_G I_Z \ddot{O} M		
VOMP An der Leiten		I_P		Ö		
ZILLERTALER ALPEN					Z P M	
BRIXLEGG Innweg						
KRAMSACH Angerberg					Z P M	
WÖRGL Stelzhamerstrasse				Ö		
KUFSTEIN Praxmarerstrasse				Ö		
KUFSTEIN Festung					Z P M	
LIENZ Amlacherkreuzung				Ö		
LIENZ Sportzentrum					Z P M	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
F	Überschreitung der Grenzwerte der 2. FVO
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme
В	Überschreitung der Grenzwerte der Vereinbarung gemäß Art. 15a B-VG über die
Б	Festlegung von Immissionsgrenzwerten für Luftschadstoffe BGBL. 443/1987, Anlage 2
I_{G}	Überschreitung von Grenzwerten für Stickstoffdioxid gem. Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Informationsschwelle gemäß Ozongesetz.
I_Z	Überschreitung von Zielwerten für Stickstoffdioxid und Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Grenzwert zum Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
I_P	Überschreitung des im Immissionsschutz Gesetz Luft genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10-Tages grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
!	Überschreitung von Warnwerten gemäß IG-L bzw. der Alarmschwelle gemäß Ozongesetz
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Juli 2005

Messnetz

Am Messnetz wurden keine Standortveränderungen durchgeführt. Die Verfügbarkeiten der gemessenen Schadstoffkomponenten sind den Messstellentabellen zu entnehmen. Die Messungen für TSP (Schwebstaub; Total Suspended Particles) wurde gesetzeskonform eingestellt. Seit 1.1. wird an 3 Standorten sowohl die radiometrische wie auch die gravimetrische Methode zur PM10-Messung durchgeführt, an der Trendmessstelle INNSBRUCK/Fallmerayerstrasse zusätzlich PM2,5 (gravimetrische Methode). Die Wägung der besaugten Filter wird vorübergehend vom Amt der Salzburger Landesregierung in Amtshilfe besorgt.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der Juli war zwar als wenig sommerlich verschrien, die Statistik spricht aber eine andere Sprache. In den meisten Regionen war es nämlich um etwa 1 Grad zu warm, nur im Außerfern entsprachen die Temperaturen ganz dem langjährigen Schnitt. Zu kalt war vor allem die erste Dekade; danach war es relativ warm, zum Monatsende sogar ausgesprochen heiß. Die Temperatur erreichte am 29.7. in Innsbruck ihr Maximum mit 36,1 Grad. Insgesamt gab es in der Landeshauptstadt 7 Tropentage (Tage über 30 Grad), das sind um 3 mehr als im Schnitt, 2004 gab es beispielsweise nur 2 Tropentage im Juli.

Seinen schlechten Ruf verdankt der Juli wohl hauptsächlich der großen Anzahl an Niederschlagstagen. Sind im Schnitt ohnehin schon 18 Tage im Juli mit zeitweiligem Regen zu erwarten, so waren es diesmal zwischen 18 (Lienz) und satten 23 (Kufstein). Die Gesamtmengen weisen aufgrund der Verteilung von Gewittern und Unwettern starke regionale Unterschiede auf. In vielen Regionen wurden aber durchschnittliche Monatssummen erzielt. Zwischen 25 und 75% Überschuss an Regen gab es im nördlichen Außerfern und zwischen den Zillertaler Bergen, dem Tauernhauptkamm und der Kaiserregion. An einigen Orten wurden hier aufgrund der Starkniederschläge am 11./12.7. sogar noch höhere Abweichungen erreicht.

In Innsbruck wurden 8 Gewittertage gezählt, 9 sind es normal. Das Blitzortungssystem verzeichnete rund 6500 Blitze in Tirol, etwas weniger als im Julischnitt der letzten 14 Jahre.

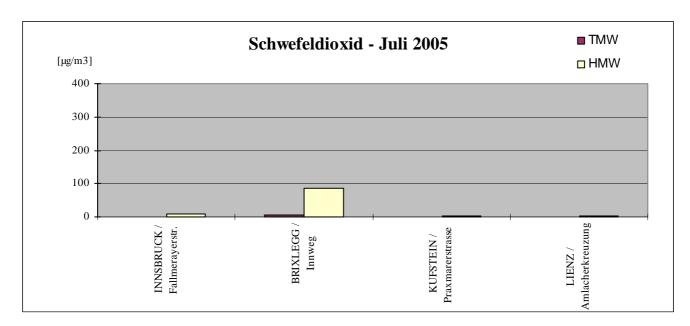
Die Summe der Sonnenstunden kam zum Schluss doch dem Soll noch relativ nahe. Statt 211 Sonnenstunden waren es diesmal genau 200.

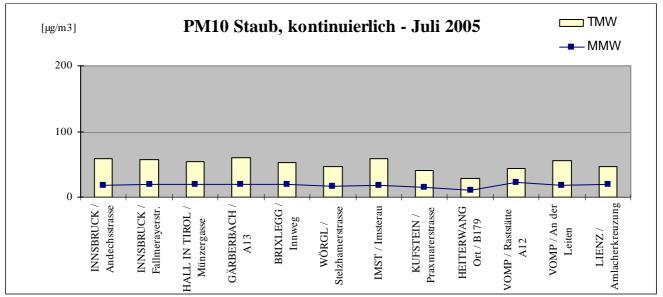
Luftschadstoffübersicht

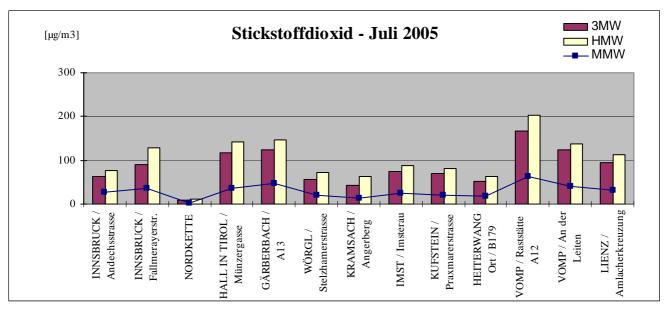
Bei den **Schwefeldioxiden** wurden die laut Immissionsschutzgesetz-Luft geltenden Grenzwerte zum Schutz der menschlichen Gesundheit eingehalten. Mit einem maximalen Tagesmittelwert von $5\mu g/m^3$ wurde am "stärkst" belasteten Messort BRIXLEGG/Innweg nicht einmal 5 % des angegebenen Grenzwertes erreicht und auch der Halbstundenmittelwert ist mit 87 $\mu g/m^3$ unter 50 % des Grenzwertes. Die restlichen 3 Messstationen zeichnen sich durch noch tiefere Konzentrationen, der maximalen Halbstundenmittelwerte bleiben im einstelligen Zahlenbereich, aus.

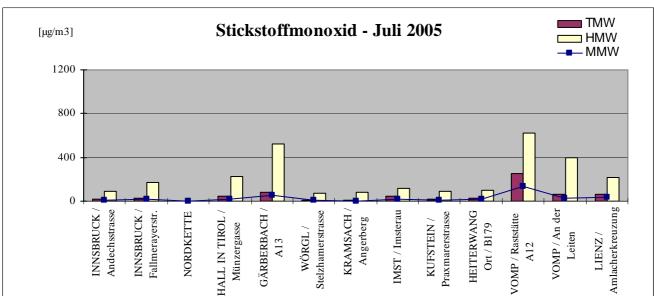
Die Monatsmittelwerte bei der Feinstaubkomponente **PM10** sind wie auch schon im Juni weiterhin niedrig. Jedoch gab es Ende Juli eine kurze Periode, in der bei allen Stationen für die Sommerjahreszeit überdurchschnittlich hohe Konzentrationen auftraten. Am 29. Juli wurde sogar an 6 Messstellen im Tagesmittel eine Konzentration über 50 μ g/m³ erreicht, was eine Verletzung des Grenzwertes nach Immissionsschutzgesetz-Luft darstellt. Der Grund für diese großräumige hohe Feinstaubbelastung war eine großräumige Südströmung, durch welche große Mengen Saharastaub nach Europa gelangten (siehe auch

http://www.tirol.gv.at/themen/umwelt/luft/downloads/PM10 TMW Grenzwertueberschreitung.pdf).

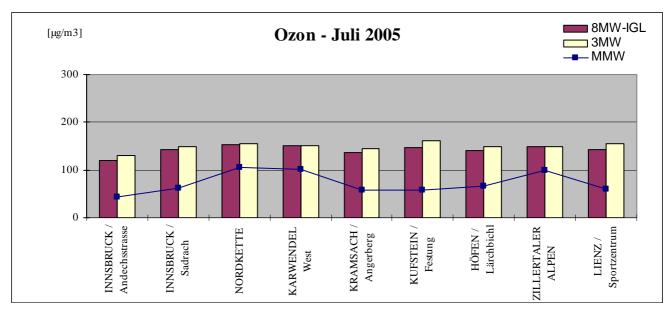

Den höchsten Monatsmittelwert bei **Stickstoffmonoxid** ist standardgemäß an der Messstelle VOMP/Raststätte A12 mit 131 μ g/m³ zu verzeichnen. Die Kurzzeitspitzen blieben bei allen Messstellen mit Ausnahme von GÄRBERBACH/A 13 mit 527 μ g/m³ und wiederum VOMP/Raststätte A 12 mit 623 μ g/m³ unter der 50 Prozentmarke des nach VDI-Richtlinie 2310 geltenden Grenzwertes von 1000 μ g/m³.

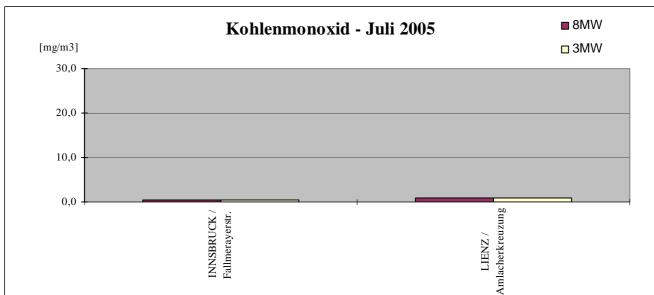

Der <u>Ziel</u>wert zum Schutz des Mensche für **Stickstoffdioxid** nach Immissionsschutzgesetz Luft wurde in VOMP/Raststätte A12 im Juli 5 mal überschritten - einmal sogar der <u>Grenz</u>wert für das Halbstundenmittel von 200 µg/m³. Bei den anderen 12 Messstationen sind die gemessenen Konzentrationen deutlich geringer; auch die gesetzlichen Immissions<u>ziel</u>konzentration für Ökosysteme sind an den beiden vegetationsrelevanten Messstellen INNSBRUCK/Nordkette und KRAMSACH/Angerberg eingehalten.


Die **Ozon**belastung ist – untypisch gegenüber den Vorjahren - im Juli im Vergleich zum Vormonat zurückgegangen. Bei den tiefer gelegenen Messstandorten gab es einen Rückgang der Monatsmittelwerte zwischen 11 und 15 μ g/m³, bei den Bergstationen fiel der Rückgang mit 3 - 7 μ g/m³ etwas geringer aus. Dennoch wurde an allen Messorten der Zielwert für Ozon laut Ozongesetz überschritten. Zudem gab es auch zahlreiche Überschreitungen der wirkungsbezogenen Immissionsgrenzkonzentrationen zum Schutz des Menschen beziehungsweise zum Schutz der Vegetation nach der ÖAW (Österreichischen Akademie der Wissenschaften).


An den beiden bestehenden **Kohlenmonoxid**messstellen INNSBRUCK/Fallmerayerstraße und LIENZ/Amlacherkreuzung wurden sehr niedrige Monatsmittelkonzentrationen von 0,3 bzw 0,5 mg/m³ gemessen. Der vorgeschriebene Grenzwert wurde ganz klar eingehalten.

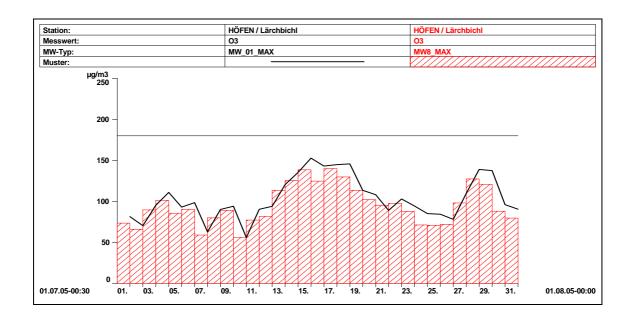
Stationsvergleich





MONATSBERICHT JULI 2005 Seite 9

Messstelle: HÖFEN / Lärchbichl


	SC	SO2 PM10 PM10 NO NO2				03					СО					
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3			$\mu g/m^3$					mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									73	74	76	81	82			
02.									64	66	69	70	71			
So 03.									89	90	94	95	95			
04.									98	101	109	111	114			
05.									86	86	92	93	96			
06.									87	90	98	98	99			
07.									57	59	62	63	66			
08.									77	80	87	90	94			
09.									85	89	91	94	96			
So 10.									52	56	55	56	60			
11.									74	77	89	90	94			
12.									77	82	93	94	98			
13.									113	113	119	121	122			
14.									119	125	134	135	137			
15.									134	139	148	153	154			
16.									119	125	141	143	145			
So 17.									130	140	144	145	147			
18.									127	130	145	146	147			
19.									95	113	122	114	120			
20.									102	102	107	108	109			
21.									83	95	86	89	92			
22.									96	98	101	103	106			
23.									88	88	92	94	94			
So 24.									67	71	81	85	86			
25.									71	71	81	84	85			
26.									68	72	78	78	79			
27.									92	98	108	110	110			
28.									117	127	138	139	140			
29.									114	121	134	137	138			
30.									87	88	92	96	96			
So 31.									76	80	87	90	91			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						154	
Max.1-MW						153	
Max.3-MW						148	
IGL8-MW						134	
Max.8-MW						140	
Max.TMW						106	
97,5% Perz.							
MMW	-		-			67	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OCCONGRAÇÃO LA					0	
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					7	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					11	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

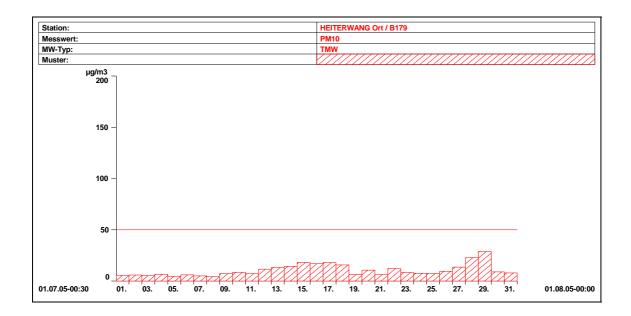
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

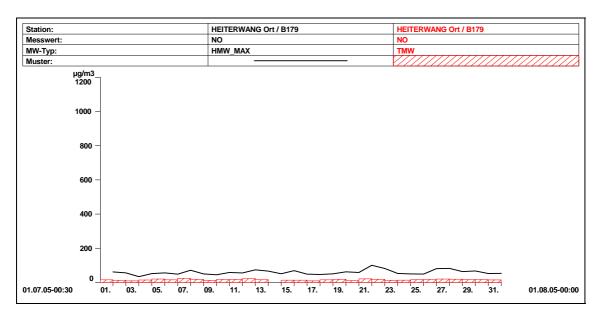
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

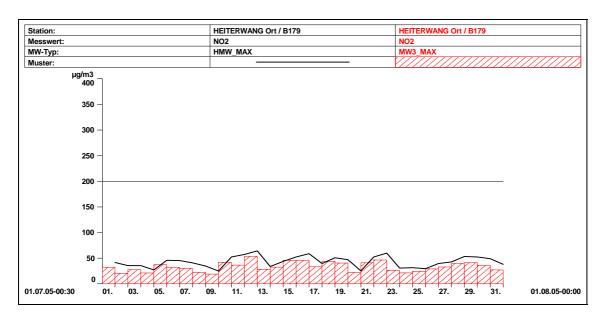
Messstelle: HEITERWANG Ort / B179

	SC)2	PM10	PM10	NO		NO2	_		_	03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$ mg/m^3		$\mu g/m^3$		$\mu g/m^3$		mg/m³		
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			5		61	16	31	42								
02.			6		56	13	26	35								
So 03.			5		34	10	31	35								
04.			7		52	15	24	27								
05.			5		56	19	39	46								
06.			6		48	14	44	45								
07.			5		71	19	38	41								
08.			4		50	15	27	35								
09.			7		45	11	21	25								
So 10.			9		58	21	43	52								
11.			7		55	24	43	57								
12.			12		74	22	58	64								
13.			13		66	15	30	34								
14.			14		51		40	44								
15.			18		69	23	52	52								
16.			17		49	25	55	59								
So 17.			18		46	14	39	40								
18.			16		50	25	50	51								
19.			6		62	21	44	47								
20.			11		58	12	23	25								
21.			6		100	19	48	52								
22.			12		82	21	55	60								
23.			8		52	14	22	31								
So 24.			8		50	14	26	32								
25.			7		49	16	26	30								
26.			9		81	16	35	40								
27.			14		82	19	36	43								
28.			23		63	23	43	53								
29.			29		67	23	45	52								
30.			9		52	23	38	49								
So 31.			8		53	15	30	38								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		31		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				100	64		
Max.1-MW					58		
Max.3-MW					53		
IGL8-MW							
Max.8-MW							
Max.TMW		29		24	25		
97,5% Perz.							
MMW				16	18		
Gl.JMW		16			28		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

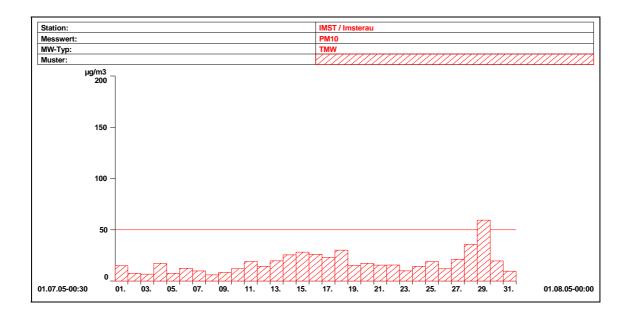
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

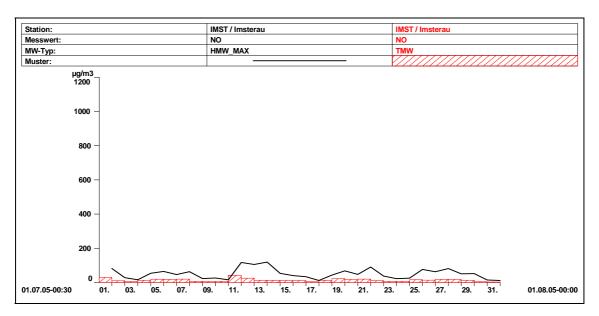
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

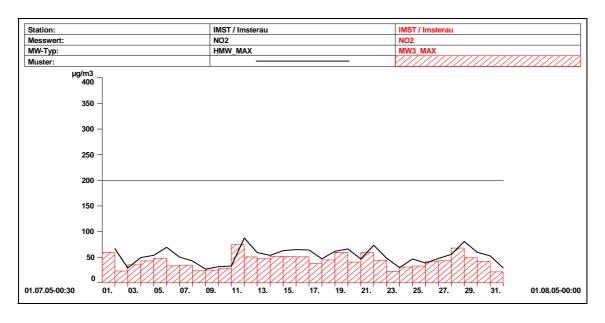
Zeitraum: JULI 2005 Messstelle: IMST / Imsterau

	SC	02	PM10	PM10	NO		NO2	_	03				СО			
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	ı			$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			15		81	35	62	66								
02.			7		28	15	26	29								
So 03.			7		16	15	41	49								
04.			17		53	24	49	54								
05.			8		64	29	64	69								
06.			12		46	20	45	50								
07.			10		63	24	39	42								
08.			6		23	13	26	27								
09.			8		26	14	26	31								
So 10.	_		12		15	20	28	33								
11.			19		117	42	78	87								
12.			14		105	31	57	59								
13.			20		119	22	47	53								
14.			26		53	28	54	63								
15.			28		40	31	60	65								
16.			26		33	34	61	64								
So 17.			23		11	16	41	47								
18.			30		43	30	54	61								
19.			15		67	34	61	66								
20.			17		47	27	45	47								
21.			16		90	31	72	73								
22.			16		37	23	45	48								
23.			10		22	15	26	29								
So 24.			14		25	20	36	46								
25.			19		76	23	34	39								
26.			12		62	25	44	47								
27.			21		81	30	47	55								
28.			36		50	36	66	81								
29.			59		52	33	54	60								
30.			20		14	21	50	53								
So 31.			10		11	13	27	29								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				119	87		
Max.1-MW					78		
Max.3-MW					75		
IGL8-MW							
Max.8-MW							
Max.TMW		59		42	42		
97,5% Perz.							
MMW				14	25	-	
Gl.JMW		34			39		


JULI 2005 Zeitraum: Messstelle: IMST / Imsterau

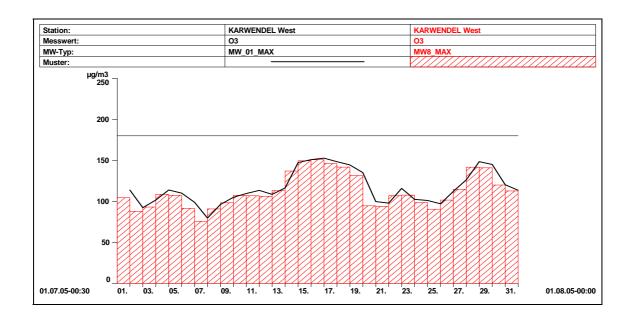

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: KARWENDEL West


	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									104	109	112	114	114			
02.									86	88	90	92	94			
So 03.									93	93	98	102	102			
04.									108	108	113	114	116			
05.									99	107	109	110	110			
06.									90	91	99	99	103			
07.									76	76	77	80	80			
08.									91	91	96	96	99			
09.									98	98	102	105	107			
So 10.									106	107	109	110	113			
11.									106	107	111	113	114			
12.									103	106	106	109	109			
13.									113	113	116	116	117			
14.									137	137	146	147	148			
15.									150	150	151	151	152			
16.									146	151	152	153	153			
So 17.									146	146	148	148	149			
18.									135	142	142	144	146			
19.									130	131	133	135	137			
20.									94	95	98	100	101			
21.									94	94	97	98	98			
22.									107	107	113	116	120			
23.									99	108	112	103	104			
So 24.									90	99	100	101	102			
25.									90	91	95	97	99			
26.									98	102	107	112	113			
27.									115	115	125	126	128			
28.									141	142	143	148	149			
29.									133	141	142	145	146			
30.									115	120	119	120	121			
So 31.									107	113	114	114	114			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						28	
Verfügbarkeit						94%	
Max.HMW						153	
Max.1-MW						153	
Max.3-MW						152	
IGL8-MW						150	
Max.8-MW						151	
Max.TMW						142	
97,5% Perz.							
MMW			-			102	-
Gl.JMW							

Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONOFOFTZ AL LUI					0	
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					,	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					8	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					21	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

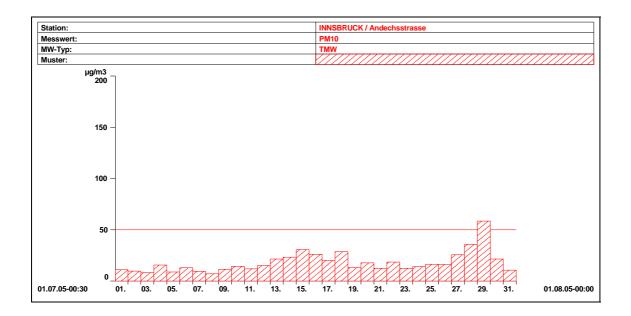
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

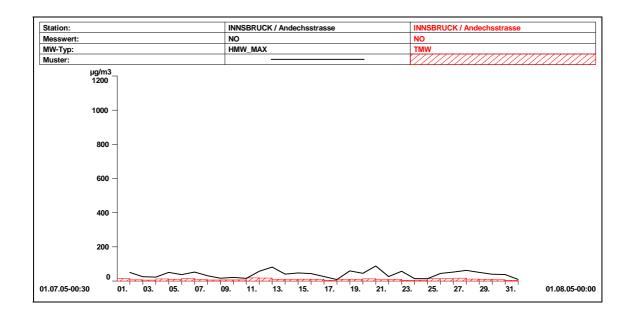
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

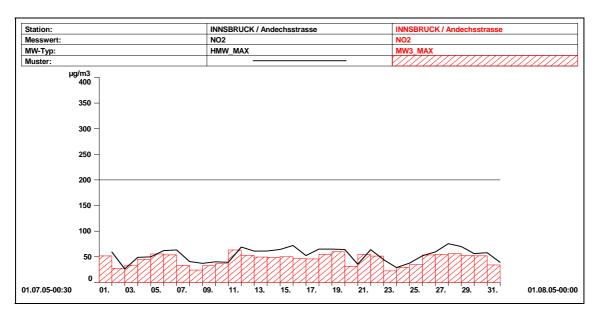
Messstelle: INNSBRUCK / Andechsstrasse

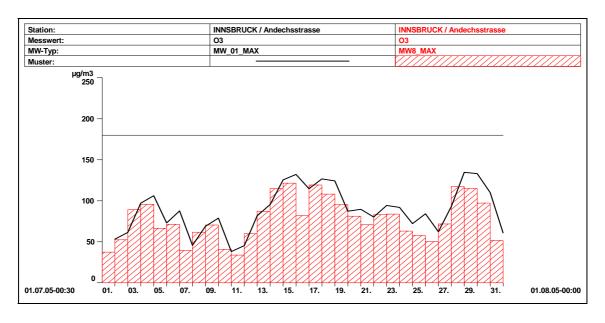
	SC)2	PM10	PM10	NO		NO2	_		_	03	_	_		CO	
		_	kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$			1	$\mu g/m^3$	1			mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			11		50	36	54	59	38	44	48	53	54			
02.			10		25	18	24	26	52	52	59	61	62			
So 03.			8		23	14	41	49	90	89	95	97	98			
04.			16		51	28	48	50	92	96	102	106	111			1
05.			9		37	29	60	62	60	66	72	73	78			1
06.			13		52	28	62	63	65	71	87	88	90			1
07.			9		31	25	36	41	38	39	44	46	47			1
08.			7		16	17	28	37	60	62	68	69	71			1
09.			11		21	19	34	40	68	71	78	79	81			
So 10.			14		15	24	37	39	27	41	36	38	38			
11.			12		57	38	63	69	33	34	41	45	51			1
12.			15		82	30	56	61	60	60	73	82	84			1
13.			21		40	25	57	61	87	87	93	95	96			1
14.			23		48	28	63	64	115	115	122	126	127			1
15.			31		44	33	63	72	121	122	130	132	135			1
16.			26		26	34	50	52	77	82	106	115	115			
So 17.			20		8	18	53	65	119	119	125	127	128			
18.			29		60	28	57	65	108	108	117	124	125			1
19.			13		45	31	64	64	59	95	80	87	89			1
20.			18		88	21	34	35	81	81	88	90	91			1
21.			12		26	26	63	64	68	71	75	80	81			1
22.			18		57	24	40	44	84	83	90	94	96			1
23.			12		14	14	26	29	81	84	92	92	95			
So 24.			14		14	19	34	38	58	63	70	72	75			
25.			16		44	26	52	52	56	58	80	84	89			1
26.			16		53	29	53	59	48	50	61	62	64			
27.			26		63	31	70	76	71	72	88	93	97			
28.			36		51	34	66	70	112	117	128	135	137			1
29.			59		40	30	52	56	113	115	128	133	137			
30.			21		38	24	57	58	95	97	108	110	111			1
So 31.			11		10	16	37	39	50	52	58	61	62			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31	31	
Verfügbarkeit		100%		98%	98%	98%	
Max.HMW				88	76	137	
Max.1-MW					70	135	
Max.3-MW					63	130	
IGL8-MW						121	
Max.8-MW						122	
Max.TMW		59		18	38	69	
97,5% Perz.							
MMW				10	26	44	
Gl.JMW		34			44		


Messstelle: INNSBRUCK / Andechsstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					1	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	22	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	6	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

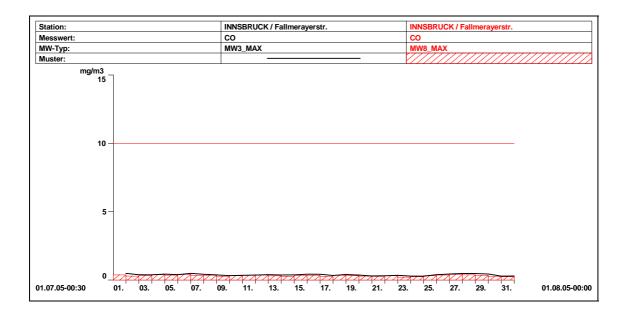

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

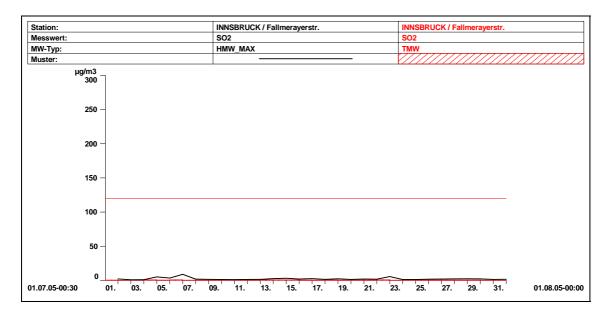
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

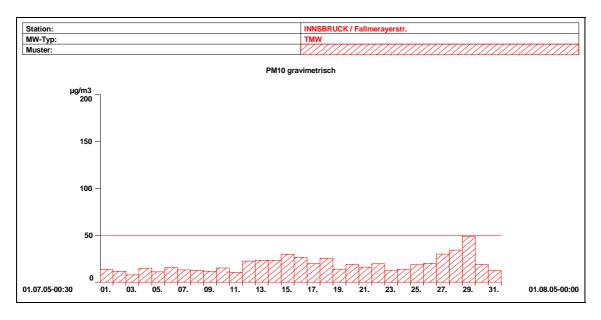
Messstelle: INNSBRUCK / Fallmerayerstrasse

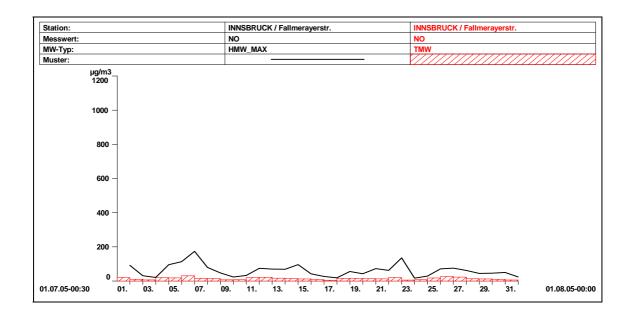
	SO	02	PM10	PM25	NO		NO2			_	03		_		CO	_
			grav.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	2	14	8	92	44	84	85						0.4	0.5	0.5
02.	0	1	11	6	31	28	51	52						0.3	0.4	0.4
So 03.	0	1	8	7	21	20	60	68						0.3	0.4	0.4
04.	1	5	15	12	96	41	67	85						0.4	0.5	0.5
05.	1	3	11	8	113	45	94	129						0.4	0.4	0.6
06.	1	9	16	12	174	43	66	86						0.4	0.5	0.6
07.	0	2	13	10	80	37	65	76						0.3	0.5	0.5
08.	1	2	13	9	47	30	50	55						0.4	0.4	0.6
09.	0	1	11	9	23	25	51	56						0.3	0.4	0.4
So 10.	0	1	15	11	33	29	52	62						0.3	0.5	0.7
11.	0	1	11	8	75	44	72	78						0.3	0.4	0.5
12.	1	2	22	13	70	40	67	69						0.4	0.4	0.5
13.	1	3	23	16	69	34	72	83						0.3	0.4	0.5
14.	1	3	23	18	96	37	70	76						0.3	0.5	0.5
15.	1	2	30	21	42	47	81	97						0.3	0.5	0.5
16.	1	3	26	19	27	43	71	74						0.3	0.5	0.7
So 17.	1	2	20	14	19	25	62	73						0.3	0.4	0.4
18.	1	2	25	19	56	43	74	78						0.3	0.4	0.5
19.	1	1	14	9	43	42	69	76						0.3	0.4	0.5
20.	1	2	19	11	73	28	42	50						0.3	0.4	0.4
21.	1	2	16	8	62	38	83	84						0.3	0.3	0.4
22.	1	6	20	12	136	35	66	72						0.3	0.4	0.5
23.	1	1	13	10	17	24	43	45						0.2	0.3	0.4
So 24.	1	1	14	12	29	30	54	56						0.2	0.3	0.4
25.	1	2	19	12	71	36	60	62						0.3	0.4	0.5
26.	1	2	20	13	76	44	83	86						0.4	0.5	0.5
27.	1	2	30	17	62	43	77	78						0.4	0.6	0.6
28.	1	2	34	23	45	47	110	116						0.4	0.5	0.6
29.	1	2	49	27	46	39	75	79						0.3	0.5	0.6
30.	0	1	19	13	50	35	71	72						0.3	0.3	0.4
So 31.	0	2	12	10	24	28	51	55						0.2	0.3	0.4

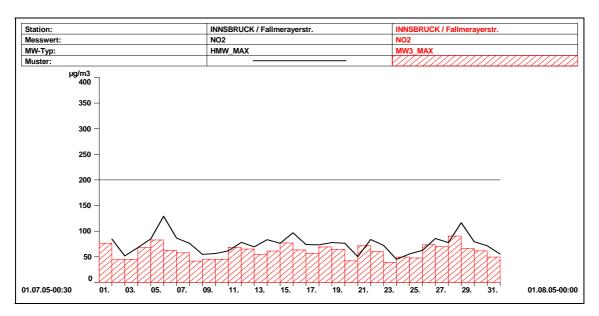
	SO2	PM10 grav.	PM25 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	9			174	129		0.7
Max.1-MW					110		0.6
Max.3-MW	4				90		0.5
IGL8-MW							
Max.8-MW							0.4
Max.TMW	1	49	27	30	47		0.3
97,5% Perz.	2						
MMW	1	19	13	14	36		0.3
Gl.JMW					51		


Messstelle: INNSBRUCK / Fallmerayerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		0
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				14		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

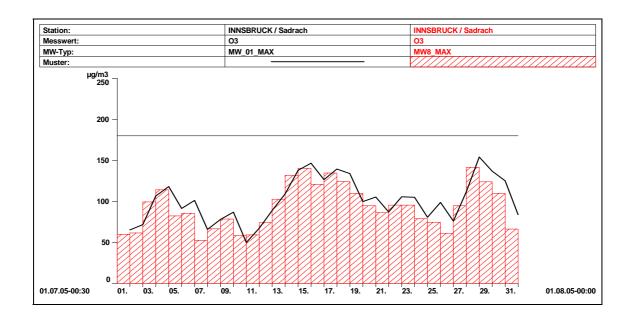

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO		NO2			_	03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									60	71	63	65	68			
02.									59	61	71	72	73			
So 03.									99	99	105	107	107			
04.									107	114	117	118	119			
05.									77	82	84	91	96			
06.									83	85	99	101	101			
07.									52	52	57	66	67			
08.									66	67	75	78	80			
09.									74	78	84	87	89			
So 10.									38	58	47	50	55			
11.									58	59	62	67	70			
12.									72	74	85	89	94			
13.									101	103	109	109	109			
14.									130	132	138	138	143			
15.									140	140	145	147	149			
16.									101	121	122	126	130			
So 17.									134	135	139	139	143			
18.									125	124	132	134	134			
19.									81	110	97	100	102			
20.									94	95	102	105	107			
21.									81	86	87	87	89			
22.									94	96	102	106	106			
23.									93	95	103	105	106			
So 24.									70	79	77	81	83			
25.									74	75	91	99	103			
26.									55	61	73	76	79			
27.									93	95	109	112	115			
28.									142	142	149	154	157			
29.									119	124	131	137	141			
30.									108	110	123	125	125			
So 31.									66	66	78	84	86			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						157	
Max.1-MW						154	
Max.3-MW						149	
IGL8-MW						142	
Max.8-MW						142	
Max.TMW						101	
97,5% Perz.							
MMW						63	
Gl.JMW							


Messstelle: INNSBRUCK / Sadrach

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					7	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	ichtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					11	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

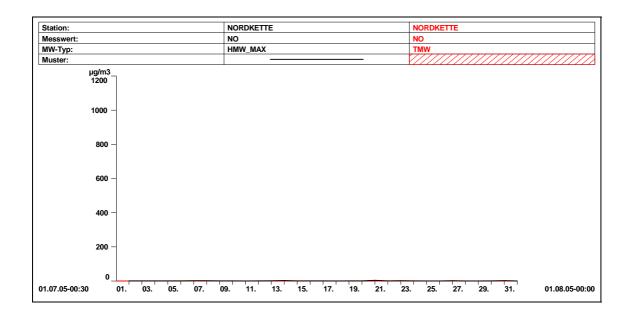
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

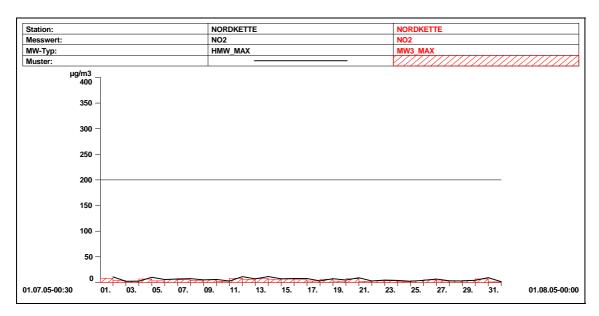
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

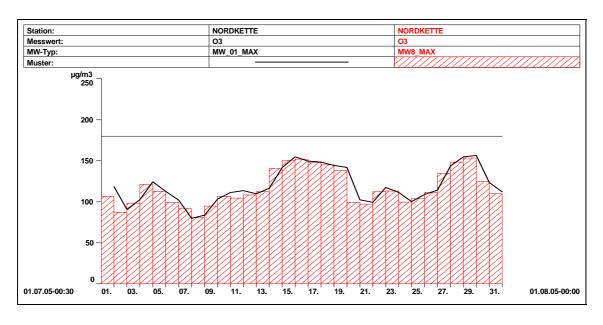
Zeitraum: JULI 2005 Messstelle: NORDKETTE

	SO)2	PM10	PM10	NO		NO2			03			_	co		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					1	2	10	11	107	110	113	118	120			
02.					1	1	1	2	87	87	90	91	92			
So 03.					1	1	2	3	98	98	102	103	103			
04.					1	3	8	10	121	121	124	124	125			
05.					1	1	4	6	103	113	114	113	114			
06.					2	2	7	7	99	99	101	102	105			
07.					2	2	6	7	76	92	81	80	82			
08.					1	1	4	5	81	81	82	84	85			
09.					1	3	5	6	94	95	102	103	104			
So 10.					1	2	2	3	106	107	110	111	115			
11.					1	3	11	11	103	105	113	114	114			
12.					2	3	6	7	108	108	109	110	110			
13.					3	4	11	11	112	112	115	116	117			
14.					1	4	6	7	141	141	141	142	143			
15.					1	4	8	8	151	151	154	155	155			
16.					1	3	7	8	147	152	151	150	152			
So 17.					1	2	3	3	145	148	148	148	151			
18.					1	4	7	7	141	145	145	144	145			
19.					1	1	4	5	138	138	141	142	146			
20.					4	2	9	9	98	99	101	102	103			
21.					1	1	2	3	97	97	98	99	100			
22.					2	1	4	5	112	112	116	117	118			
23.					1	1	4	4	101	113	115	111	112			
So 24.					1	1	2	2	99	100	100	100	101			
25.					1	2	4	4	103	104	108	109	113			1
26.					2	2	6	7	111	111	114	114	117			
27.					1	2	3	3	134	134	142	144	145			
28.					1	2	3	3	149	148	152	155	157			
29.					1	2	4	4	148	153	156	156	157			
30.					2	3	8	9	108	124	122	123	125			
So 31.					1	1	1	1	106	110	111	112	113			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	со
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				97%	97%	98%	
Max.HMW				4	11	157	
Max.1-MW					11	156	
Max.3-MW					8	156	
IGL8-MW						151	
Max.8-MW						153	
Max.TMW				1	4	143	
97,5% Perz.							
MMW				0	2	106	
Gl.JMW					4		


Zeitraum: JULI 2005 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					11	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	22	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			•


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

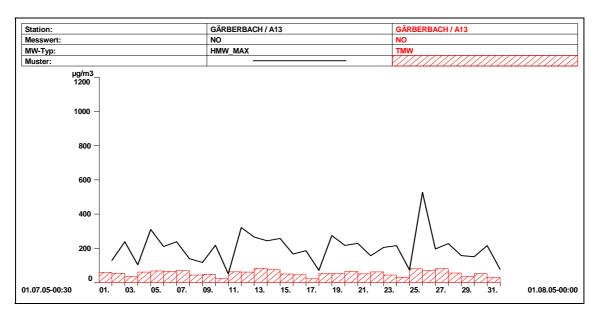
Messstelle: GÄRBERBACH / A13

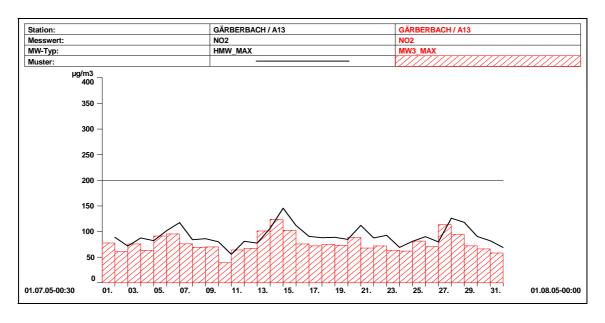
	SO)2	PM10	PM10	NO		NO2		_		03	_			СО	_
		, ,	kont.	grav.	/ 2	_	, 2								/ 2	
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				μg/m³			mg/m³		
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 1-MW	max HMW	IGL 8-MW	max 8-MW	max 3-MW	max 1-MW	max HMW	max 8-MW	max 1-MW	max HMW
01.			16		129	53	82	89								
02.			14		238	41	68	72								
So 03.			10		103	37	82	87								
04.			18		310	44	73	82								
05.			12		210	59	95	102								
06.			14		238	42	109	117								
07.			15		139	51	80	84								
08.			11		117	43	74	86								
09.			13		217	40	75	80								
So 10.			13		50	29	43	56								
11.			12		321	44	64	81								
12.			16		266	46	72	78								
13.			26		244	55	102	106								
14.			26		257	60	122	146								
15.			29		166	58	105	112								
16.			25		186	53	79	91								
So 17.			21		70	37	80	88								_
18.			26		274	52	78	89								
19.			13		216	47	81	85								
20.			21		229	47	85	112								
21.			15		156	45	78	87								
22.			20		205	50	87	93								
23.			17		215	42	64	69								
So 24.			15		73	33	70	81								
25.			19		527	44	86	90								
26.			20		196	45	75	80								
27.			27		227	47	124	126								
28.			36		157	58	110	118								
29.			60		150	51	83	91								
30.			27		215	52	73	82								
So 31.			14		77	39	59	69								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				527	146		
Max.1-MW					124		
Max.3-MW					124		
IGL8-MW							
Max.8-MW							
Max.TMW		60		83	60		
97,5% Perz.							
MMW				54	47		
Gl.JMW		26			52		

JULI 2005 Zeitraum:


Messstelle: GÄRBERBACH / A13


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\mathrm{U}}\mathrm{1}\mathrm{)}$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

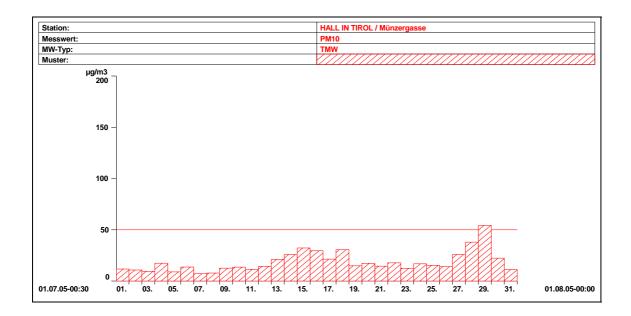
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

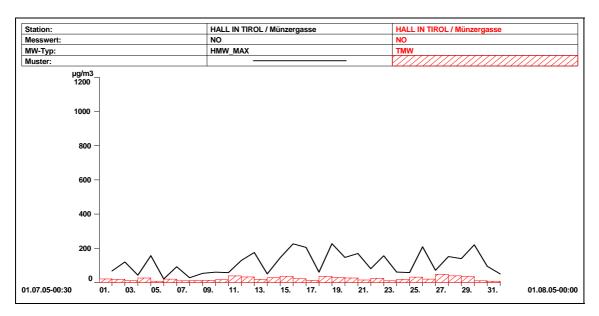
Messstelle: HALL IN TIROL / Münzergasse

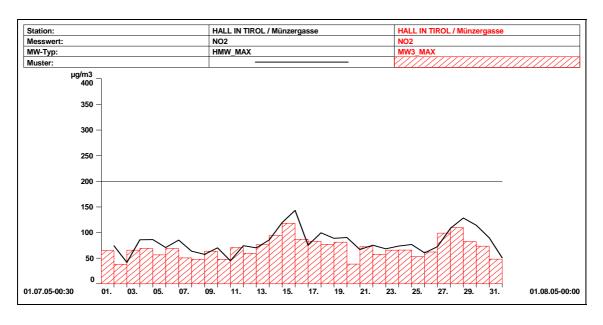
	SC)2	PM10	PM10	NO		NO2			_	03		_	СО		
		_	kont.	grav.												
	μg	m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			12		67	44	69	74								
02.			11		119	25	39	42								
So 03.		_	10		42	19	81	86								
04.			17		157	39	72	86								
05.			9		20	36	62	71								
06.			14		92	32	80	85								
07.			7		27	33	59	64								
08.			8		53	25	50	58								
09.			13		60	27	70	70								
So 10.			14		58	31	44	45								
11.			12		129	54	74	74								
12.			14		175	41	67	70								
13.			21		50	28	82	86								
14.			26		145	41	115	120								
15.			32		226	54	136	143								
16.			30		205	50	71	75								
So 17.			21		60	31	99	100								
18.			31		227	50	85	89								
19.			15		146	45	86	90								
20.			17		169	26	59	67								
21.			15		80	36	72	75								
22.			18		156	32	50	68								
23.			12		61	28	69	74								
So 24.			17		58	33	73	77								
25.			15		208	29	57	60								
26.			14		71	34	67	73								
27.			26		152	43	108	108								
28.			38		139	54	126	128								
29.			54		220	56	94	114								
30.			22		94	30	88	90								
So 31.			11		50	29	49	51								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				227	143		
Max.1-MW					136		
Max.3-MW					118		
IGL8-MW							
Max.8-MW							
Max.TMW		54		47	56		
97,5% Perz.							
MMW				22	37		
Gl.JMW		32			48		

JULI 2005 Zeitraum:


Messstelle: HALL IN TIROL / Münzergasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				17		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

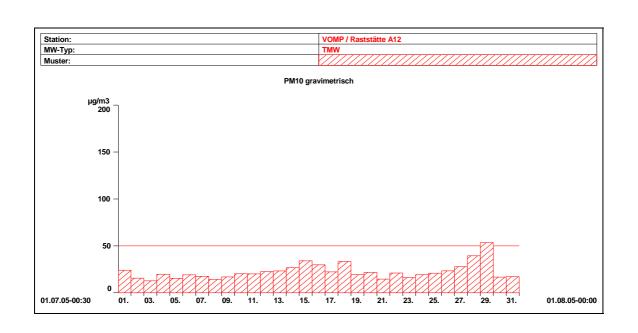

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

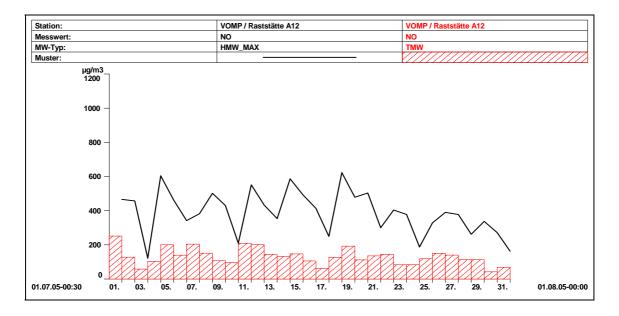
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

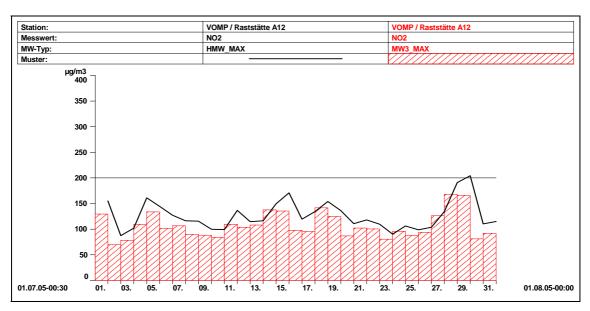
Messstelle: VOMP / Raststätte A12

	SC	02	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$	1			mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.				24	466	85	143	155								
02.				16	457	51	85	87								
So 03.				13	122	39	92	102								
04.				20	604	57	131	161								
05.				15	463	84	140	144								
06.				19	342	61	111	127								
07.				18	382	72	115	116								
08.				14	502	60	110	116								
09.				17	430	57	92	100								
So 10.				20	210	51	91	99								
11.				20	552	79	122	137								
12.				22	433	70	108	115								
13.				23	354	64	111	116								
14.				27	586	80	144	150								
15.				34	493	91	145	171								
16.				30	413	76	106	119								
So 17.				22	250	57	121	134								
18.				33	623	74	151	154								
19.				19	479	74	133	136								
20.				22	504	49	97	111								
21.				15	301	64	110	118								
22.				21	404	65	101	110								
23.				16	378	51	85	90								
So 24.				19	188	51	100	106								
25.				21	329	52	96	99								
26.				23	390	59	100	104								
27.				28	378	59	131	134								
28.				39	262	81	181	191								
29.				53	337	82	198	204								
30.				17	272	38	89	110								
So 31.				17	163	52	94	115								


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				623	204		
Max.1-MW					198		
Max.3-MW					168		
IGL8-MW							
Max.8-MW							
Max.TMW			53	252	91		
97,5% Perz.							
MMW			23	131	64		
Gl.JMW					74		

Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		1		
IG-L: Zielwerte menschliche Gesundheit		1		5		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONOPOPTZ AL I. II.						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

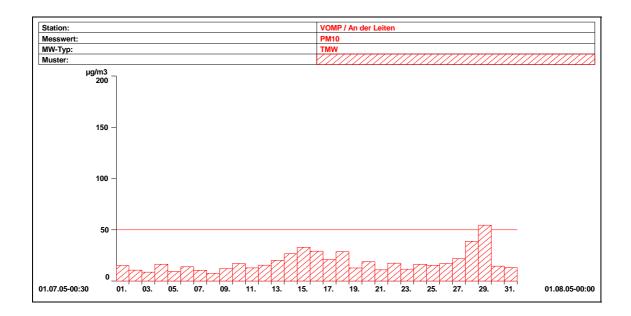
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

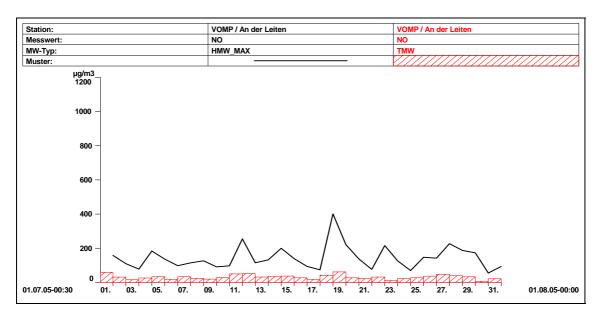
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

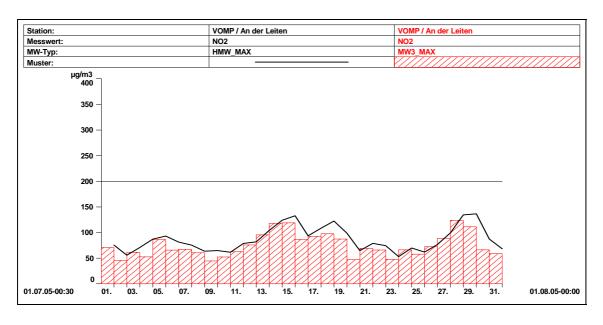
Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2			_	03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			15		158	51	73	75								
02.			11		110	30	48	56								
So 03.			9		78	21	66	71								
04.			16		184	33	75	87								
05.			9		136	48	91	93								
06.			14		98	30	73	81								
07.			10		114	46	74	76								
08.			7		126	36	63	64								
09.			12		91	32	59	65								
So 10.			17		97	33	55	62								
11.			13		255	50	70	79								
12.			15		115	47	77	82								
13.			20		132	40	98	104								
14.			27		199	50	120	124								
15.			33		139	60	131	133								
16.			29		94	53	80	93								
So 17.			21		74	42	107	108								
18.			29		401	52	109	122								
19.			13		221	49	91	99								
20.			19		137	26	61	65								
21.			11		77	41	76	79								
22.			17		216	37	73	74								
23.			12		126	27	48	53								
So 24.			16		69	34	68	70								
25.			15		147	33	61	62								
26.			17		142	40	75	77								
27.			22		227	41	99	100								
28.			39		187	55	130	134								
29.			55		173	56	120	137								
30.			15		55	25	80	87								
So 31.			13		93	39	63	68								

	SO2	PM10 kont.	PM10	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				401	137		
Max.1-MW					131		
Max.3-MW					124		
IGL8-MW							
Max.8-MW							
Max.TMW		55		61	60		
97,5% Perz.							
MMW				31	41		
Gl.JMW		28			51		


Messstelle: VOMP / An der Leiten

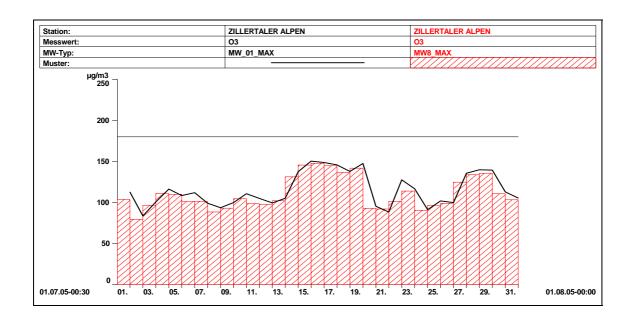

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
CHONGRAPHS 11 1 1						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				19		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: ZILLERTALER ALPEN


	SC	02	PM10	PM10	NO		NO2				03	_	_	_	СО	
			kont.	grav.		_										
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									104	104	107	112	113			
02.									79	80	83	83	87			
So 03.									97	97	99	101	102			
04.									111	111	114	116	117			
05.									99	110	109	108	110			
06.									101	101	108	112	113			
07.									79	101	103	99	99			
08.									87	88	93	93	94			
09.									93	93	98	100	102			
So 10.									104	104	108	111	111			
11.									98	98	102	105	106			
12.									94	97	97	99	100			
13.									102	102	105	105	105			
14.									131	131	136	138	138			
15.									145	145	150	150	150			
16.									143	148	148	149	149			
So 17.									141	145	146	146	147			
18.									136	136	137	138	140			
19.									142	142	146	147	150			
20.									92	93	95	95	97			
21.									87	92	90	88	89			
22.									102	101	114	128	131			
23.									107	114	121	117	117			
So 24.									88	90	91	91	93			
25.									96	96	102	102	106			
26.									94	99	98	100	102			
27.									125	125	134	136	136			
28.									131	134	138	140	140			
29.									127	136	139	139	140			
30.									106	111	112	113	114			
So 31.									103	103	105	105	106			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						150	
Max.1-MW						150	
Max.3-MW						150	
IGL8-MW						145	
Max.8-MW						148	
Max.TMW						140	
97,5% Perz.							
MMW						100	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONCECETZ, Alasmaskanilla					0	
OZONGESETZ: Alarmschwelle OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					9	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					20	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

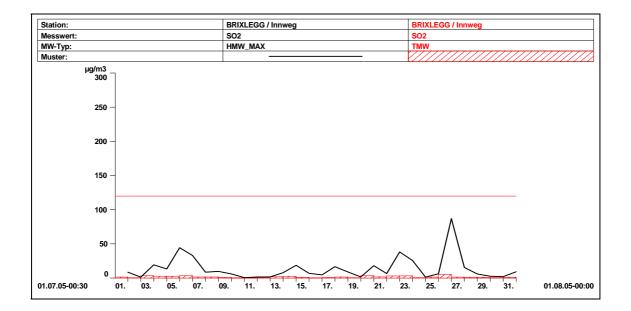
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: BRIXLEGG / Innweg

	SC)2	PM10	PM10	NO	_	NO2			_	03	_	_		со	
	μg	/m3	kont. μg/m³	grav. μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
	μg/	max	μg/III	μg/III			max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	max HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	1	9		12												
02.	1	1		8												
So 03.	3	19		11												
04.	3	13		19												
05.	2	44		12												
06.	4	33		21												
07.	2	9		12												
08.	2	10		10												
09.	1	6		14												
So 10.	0	1		15												
11.	0	2		10												
12.	0	2		15												
13.	2	8		20												
14.	3	19		25												
15.	1	7		28												
16.	0	5		24												
So 17.	1	17		20												
18.	2	9		30												
19.	0	2		10												
20.	3	18		22												
21.	2	7		16												
22.	3	38		20												
23.	3	26		14												
So 24.	1	1		16												
25.	1	6		21												
26.	5	87		23												
27.	1	15		22												
28.	1	6		34												
29.	1	3		44												
30.	1	2		17												
So 31.	1	9		12												

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	87						
Max.1-MW							
Max.3-MW	33						
IGL8-MW							
Max.8-MW							
Max.TMW	5		44				
97,5% Perz.	10						
MMW	2		19				
Gl.JMW							

JULI 2005 Zeitraum:


Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	0				
IG-L: Zielwerte menschliche Gesundheit		0				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

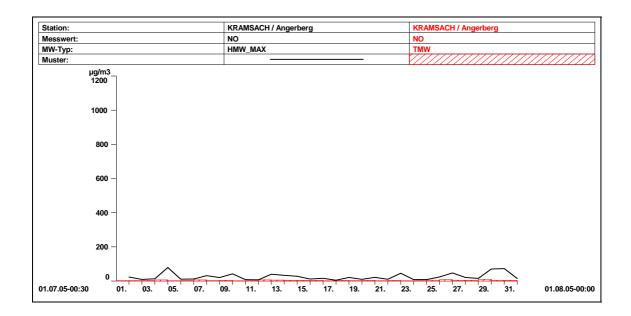
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

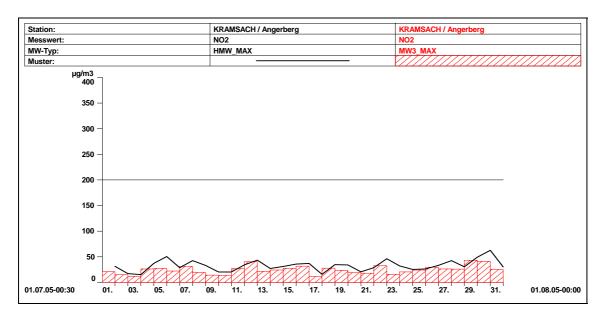
 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

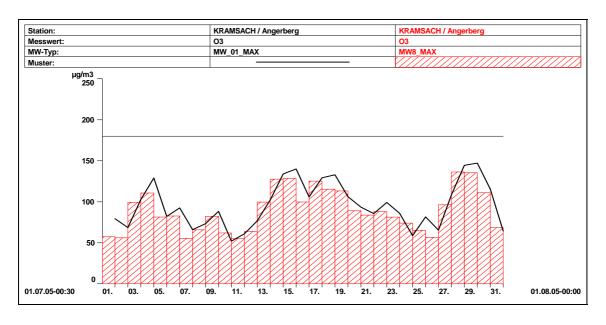
	SC)2	PM10	PM10	NO		NO2			03			СО			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.					24	13	23	31	55	72	70	79	81			
02.					10	8	16	17	56	56	64	69	72			
So 03.					13	7	14	15	99	99	102	103	103			
04.					79	14	31	37	109	111	121	129	133			
05.					11	12	37	50	69	81	81	82	83			
06.					12	12	24	29	80	83	91	93	94			
07.					31	18	34	43	49	55	58	66	69			
08.					20	9	26	33	65	66	71	73	76			
09.					42	10	18	20	82	82	87	88	89			
So 10.					8	9	14	20	46	62	50	52	54			
11.					7	18	31	34	55	55	59	61	61			
12.					40	20	41	43	61	64	81	77	88			
13.					33	14	22	27	98	100	103	102	105			
14.					28	14	28	31	126	128	133	134	135			
15.					12	17	30	36	128	128	135	140	141			
16.					16	16	36	37	94	100	100	106	108			
So 17.					5	8	13	16	123	125	129	129	132			
18.					21	16	29	35	112	115	125	133	137			
19.					10	13	27	34	94	113	109	106	109			
20.					22	12	20	21	89	89	92	94	94			
21.					10	11	23	29	74	84	78	86	87			
22.					45	13	40	46	86	88	95	99	105			
23.					9	9	23	32	80	81	84	86	87			
So 24.					8	12	25	25	51	74	61	59	66			
25.					24	16	26	26	63	65	78	82	83			
26.					48	18	31	33	56	57	63	65	67			
27.					21	15	31	42	96	96	104	109	111			
28.					16	17	30	30	136	136	140	145	146			
29.					71	23	46	49	134	135	145	147	148			
30.					73	12	57	63	90	111	110	115	116			
So 31.					15	14	29	30	46	69	63	64	69			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				79	63	148	
Max.1-MW					57	147	
Max.3-MW					43	145	
IGL8-MW						136	
Max.8-MW						136	
Max.TMW				10	23	89	
97,5% Perz.							
MMW				4	14	58	
Gl.JMW					26		

JULI 2005 Zeitraum:


Messstelle: KRAMSACH / Angerberg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					5	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	27	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	9	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

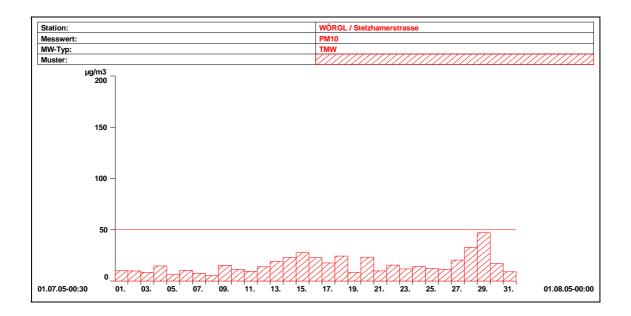
1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

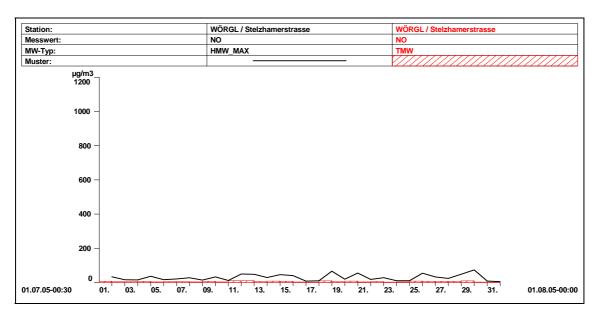
Messstelle: WÖRGL / Stelzhamerstrasse

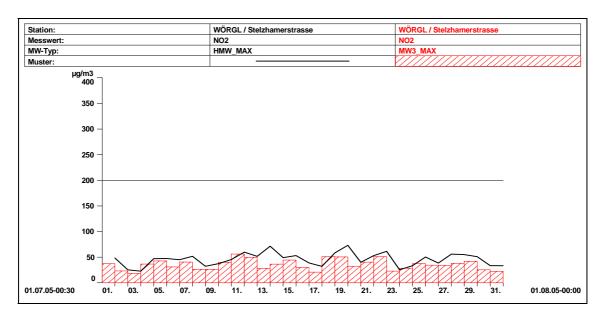
	SC	02	PM10	PM10	NO		NO2				03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.			10		33	27	40	48								
02.			10		15	17	24	25								
So 03.			9		15	10	23	23								
04.			15		36	21	38	47								
05.			6		16	26	46	47								
06.			11		20	17	31	45								
07.			8		27	20	49	52								
08.			5		14	14	27	32								
09.			15		33	15	35	37								
So 10.			11		11	24	42	45								
11.			9		49	43	58	60								
12.			14		47	30	51	52								
13.			19		29	18	46	71								
14.			23		46	23	49	49								
15.			28		40	26	50	53								
16.			23		8	20	35	39								
So 17.			18		9	13	26	32								
18.			24		66	29	57	58								
19.			9		19	27	61	73								
20.			23		55	17	35	40								
21.			10		17	17	48	53								
22.			16		28	22	55	61								
23.			12		10	14	25	25								
So 24.			14		10	19	30	33								
25.			12		54	21	37	50								
26.			11		32	20	36	38								
27.			20		23	20	44	56								
28.			33		48	25	44	55								
29.			47		73	28	43	51								
30.			17		8	16	30	33								
So 31.			9		4	14	25	33								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	μg/m³	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				73	73		
Max.1-MW					61		
Max.3-MW					56		
IGL8-MW							
Max.8-MW							
Max.TMW		47		10	43		
97,5% Perz.							
MMW				5	21	-	
Gl.JMW		27			36		

JULI 2005 Zeitraum:


Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2				0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

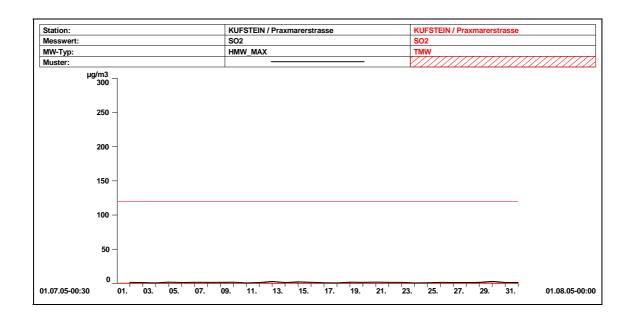

 $[\]ddot{\mathrm{U}}\mathrm{1}\mathrm{)}$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

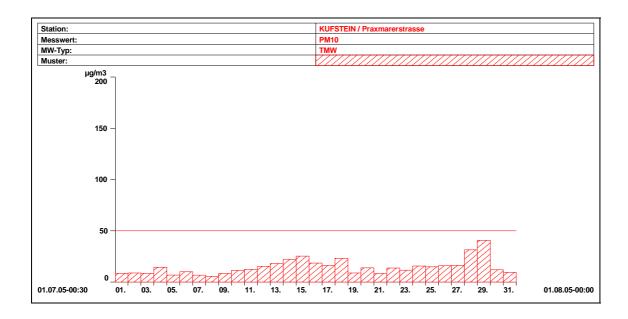
Messstelle: KUFSTEIN / Praxmarerstrasse

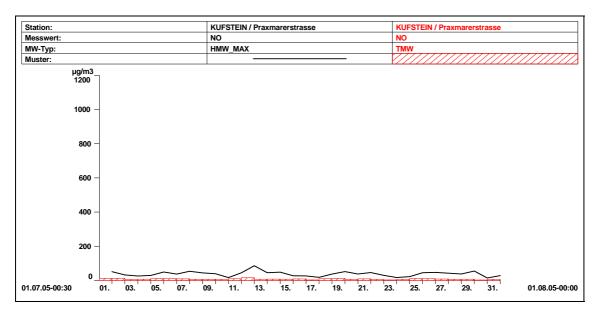
	SO)2	PM10	PM10	NO		NO2			_	03		_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				\mug/m^3				mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.	0	2	8		51	25	43	48								
02.	1	1	9		32	21	31	32								
So 03.	0	1	8		26	8	15	15								
04.	1	2	14		29	20	35	40								
05.	0	1	7		49	28	54	58								
06.	1	2	10		37	18	29	30								
07.	0	2	7		54	16	38	43								
08.	0	2	5		44	14	31	38								
09.	1	2	8		39	13	32	34								
So 10.	0	1	11		16	17	25	28								
11.	1	1	12		45	36	78	81								
12.	1	3	15		86	25	58	60								
13.	1	1	18		45	16	34	35								
14.	1	2	22		48	21	34	36								
15.	1	2	25		27	25	45	51								
16.	0	1	19		26	24	37	41								
So 17.	0	1	16		18	11	21	24								
18.	1	2	23		37	28	46	49								
19.	1	2	9		51	26	56	66								
20.	1	2	14		37	15	25	30								
21.	1	2	8		46	18	39	41								
22.	1	2	14		30	20	48	55								
23.	0	1	12		17	11	23	24								
So 24.	1	1	16		22	19	33	33								
25.	1	2	15		45	24	45	51								
26.	1	1	16		47	22	38	39								
27.	0	1	16		42	19	33	36								
28.	1	2	31		38	24	39	42								
29.	1	3	41		55	26	49	54								
30.	1	1	12		14	14 15	58	60 39								
So 31.	1	ı	10		28	13	36	39								

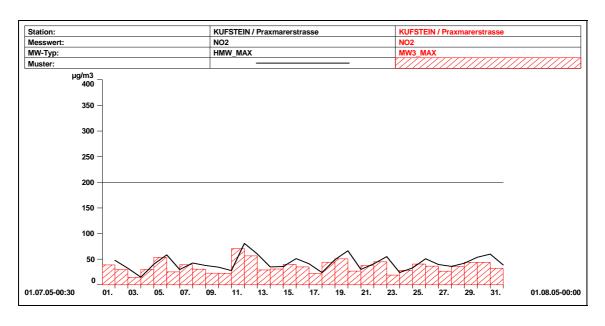

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	3			86	81		
Max.1-MW					78		
Max.3-MW	2				71		
IGL8-MW							
Max.8-MW							
Max.TMW	1	41		16	36		
97,5% Perz.	2						
MMW	1			8	20		
Gl.JMW		21			32		

Messstelle: KUFSTEIN / Praxmarerstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OF ON OPPORTURE ALL ALL INC.						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


VDI-RL 2310: NO-Grenzwert

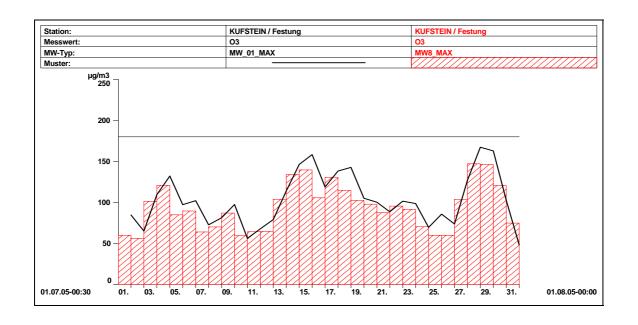

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)



n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: KUFSTEIN / Festung


	SO)2	PM10	PM10	NO	_	NO2			_	03				СО	_
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³	I			mg/m³	
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									58	60	69	85	88			
02.									54	56	63	65	65			
So 03.									101	101	109	109	112			
04.									117	121	131	132	134			
05.									75	85	94	97	98			
06.									89	90	100	102	104			
07.									57	64	68	73	75			
08.									69	70	77	81	84			
09.									85	87	95	97	98			
So 10.									45	59	54	56	60			
11.									55	64	67	68	70			
12.									63	65	76	79	80			
13.									102	104	112	114	114			
14.									134	134	146	146	148			
15.									141	140	156	158	159			
16.									105	106	115	119	124			
So 17.									129	131	136	138	141			
18.									113	114	133	143	148			
19.									89	102	109	105	107			
20.									98	98	100	100	101			
21.									80	88	87	88	89			
22.									95	95	101	102	102			
23.									90	91	98	99	99			
So 24.									52	70	64	70	70			
25.									58	60	78	86	93			
26.									59	60	73	74	75			
27.									104	104	122	127	131			
28.									147	147	161	167	168			
29.									146	146	160	163	164			
30.									94	121	103	102	103			
So 31.									42	75	56	48	52			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						168	
Max.1-MW						167	
Max.3-MW						161	
IGL8-MW						147	
Max.8-MW						147	
Max.TMW						88	
97,5% Perz.							
MMW						57	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO			
Gesetzliche Alarm-, Grenz- und Zielwerte	esetzliche Alarm-, Grenz- und Zielwerte								
IG-L: Warnwerte									
IG-L: Grenzwerte menschliche Gesundheit									
IG-L: Zielwerte menschliche Gesundheit									
IG-L: Zielwerte Ökosysteme, Vegetation									
OZONGEGETZ, Alasmas havella					0				
OZONGESETZ: Alarmschwelle					0				
OZONGESETZ: Informationsschwelle					7				
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit									
2.FVO gegen forstschädliche Luftverunreinigungen									
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2									
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)							
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					27				
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					13				
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete									
VDI-RL 2310: NO-Grenzwert									

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

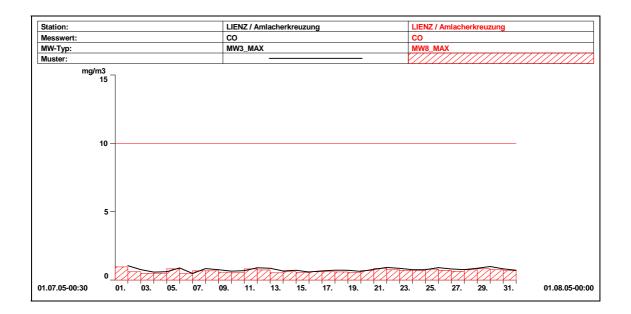
¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

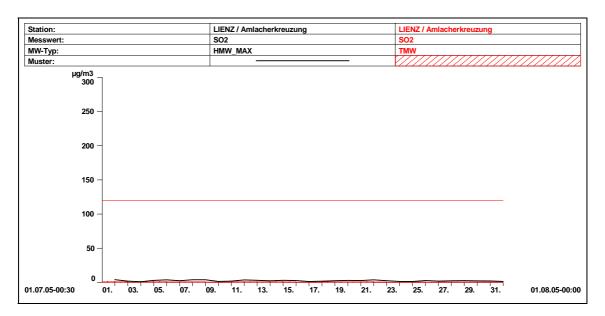
Messstelle: LIENZ / Amlacherkreuzung

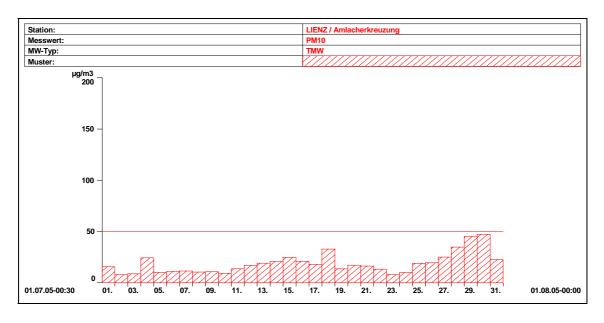
	SO)2	PM10	PM10	NO	_	NO2	NO2 O3				_	СО	_							
	μg	/m³	kont. μg/m³	grav. $\mu g/m^3$	μg/m³		цо/m³ цо/m³			$\mu g/m^3$ $\mu g/m^3$			ug/m³			$\mu \mathrm{g/m^3}$				mg/m³	
	μs	max	мь/ ш	μβ/ш	max		max	max	IGL	max	max	max	max	max	max	max					
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW					
01.	1	4	16		194	41	93	111						1.0	1.3	1.4					
02.	1	2	8		69	27	46	49						0.6	0.8	0.8					
So 03.	1	1	9		29	19	30	34						0.5	0.6	0.8					
04.	1	3	24		139	31	58	65						0.5	0.7	0.7					
05.	1	4	10		202	44	100	113						0.8	0.9	1.1					
06.	1	2	11		115	24	44	47						0.5	0.5	0.7					
07.	1	4	11		210	30	84	94						0.7	1.0	1.2					
08.	1	4	10		198	32	78	84						0.7	1.0	1.2					
09.	1	1	11		72	20	39	43						0.6	0.7	0.8					
So 10.	1	2	9		97	20	64	64						0.5	0.7	0.8					
11.	1	4	14		215	35	76	85						0.8	1.1	1.2					
12.	1	3	17		166	36	69	78						0.7	0.9	1.2					
13.	1	2	19		122	38	68	73						0.5	0.7	0.8					
14.	1	3	21		150	46	92	93						0.6	0.9	1.0					
15.	1	3	25		137	40	91	102						0.5	0.6	0.7					
16.	0	1	21		80	28	58	65						0.6	0.7	0.8					
So 17.	1	2	18		98	26	70	76						0.6	0.8	0.9					
18.	1	2	33		118	43	78	80						0.6	0.8	0.8					
19.	1	3	14		148	39	70	81						0.5	0.7	0.9					
20.	1	3	17		130	33	61	69						0.7	0.8	1.0					
21.	1	4	16		192	40	85	89						0.8	1.0	1.0					
22.	1	3	13		131	32	71	75						0.8	0.9	1.0					
23.	0	1	8		62	25	43	53						0.7	0.8	0.9					
So 24.	0	1	10		70	20	43	46						0.7	0.9	1.0					
25.	1	3	19		157	31	57	63						0.8	1.1	1.4					
26.	1	2	20		121	27	60	62						0.7	0.9	0.9					
27.	1	2	25		142	31	73	87						0.6	0.9	1.0					
28.	1	3	35		162	38	84	93						0.8	0.9	0.9					
29.	1	2	45		143	40	79	89						0.8	1.1	1.3					
30.	1	2	47		63	36	68	73						0.8	0.9	0.9					
So 31.	1	1	23		43	24	45	61						0.7	0.7	0.8					

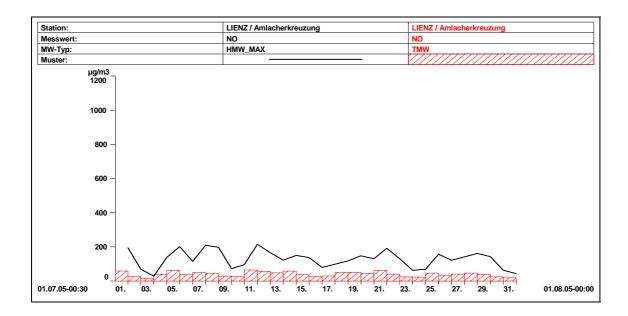
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31		31	31		31
Verfügbarkeit	98%	100%		98%	98%		99%
Max.HMW	4			215	113		1.4
Max.1-MW					100		1.3
Max.3-MW	3				95		1.0
IGL8-MW							
Max.8-MW							1.0
Max.TMW	1	47	-	65	46	-	0.7
97,5% Perz.	3						
MMW	1		-	40	32	-	0.5
Gl.JMW		30			40		

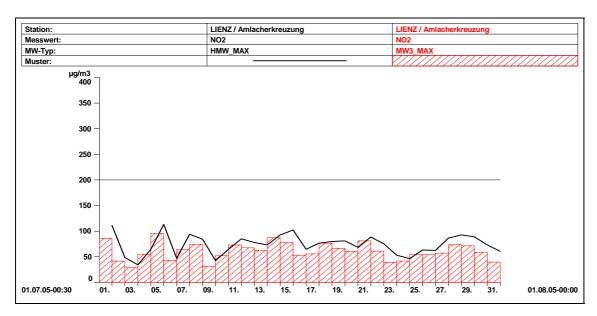
JULI 2005 Zeitraum:


Messstelle: LIENZ / Amlacherkreuzung

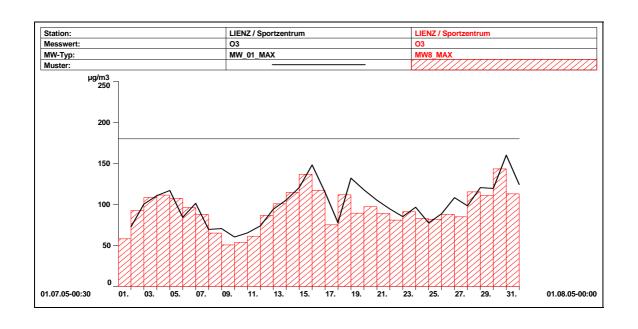

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2.FVO gegen forstschädliche Luftverunreinigungen	0					
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2	0			0		0
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				13		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\mathrm{U}}\mathrm{1}\mathrm{)}$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


1) An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Messstelle: LIENZ / Sportzentrum


	SC)2	PM10	PM10	NO	_	NO2				03		_		со	_
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$			$\mu g/m^3$			mg/m³			
		max			max		max	max	IGL	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	1-MW	HMW	8-MW	8-MW	3-MW	1-MW	HMW	8-MW	1-MW	HMW
01.									57	70	68	73	77			
02.									91	92	99	100	103			
So 03.									108	108	110	111	111			
04.									109	111	117	117	117			
05.									75	107	99	84	86			
06.									95	96	100	101	102			
07.									46	88	72	69	71			
08.									65	65	69	71	74			
09.									49	51	57	60	64			
So 10.									53	53	65	65	67			
11.									61	61	68	74	75			
12.									84	86	91	94	97			
13.									98	101	104	105	105			
14.									113	114	120	121	121			
15.									136	137	146	148	151			
16.									98	117	109	115	117			
So 17.									66	75	74	78	79			
18.									108	112	130	132	136			
19.									84	89	114	118	120			
20.									97	97	104	105	106			
21.									88	89	93	95	97			
22.									80	81	82	85	86			
23.									90	91	92	97	100			
So 24.									63	83	76	77	78			
25.									80	82	90	89	93			
26.									89	88	93	108	116			
27.									78	85	93	98	101			
28.									112	115	120	120	121			
29.									110	111	118	119	124			
30.									143	143	156	160	162			
So 31.									111	113	122	124	126			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						162	
Max.1-MW						160	
Max.3-MW						156	
IGL8-MW						143	
Max.8-MW						143	
Max.TMW						96	
97,5% Perz.							
MMW						61	
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: <u>Grenzwerte</u> menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZOMODGETZ AL I. II.					0	
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					2	
2.FVO gegen forstschädliche Luftverunreinigungen						
Art.15a B-VG: Vereinbarung über Immissionsgrenzwerte, Anl.2						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					12	
ÖAW: SO2/TSP-Kriterium-Erholungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Fallmerayerstrasse, Brixlegg/Innweg und Vomp/Raststätte A12 wird PM10 gravimetrisch gemessen

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl.Nr. 199/84)

Grenzwerte für Schwefeldioxid (SO2):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO2)									
April - Oktober November - März									
97,5 Perzentil für den Halbstundenmittelwert (HMW) in den Monaten	0,07 mg/m³	0,15 mg/m³							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.									
Tagesmittelwert (TMW)	$0.10~\mathrm{mg/m^3}$								

II. Warnwerte für Ozon laut Ozongesetz 1992:

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwert 120 μg/m³ als Achtstundenmittelwert *)						
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2012.						

III. Vereinbarung gemäß Art. 15a B-VG über die Festlegung von Immissionsgrenzwerten für Luftschadstoffe und über Maßnahmen zur Verringerung der Belastung der Umwelt samt Anlagen:

Immissionswerte im Sinne des Artikels 3

(Konzentrationswerte in mg/m³, bezogen auf 20° C und 1013 mbar)

1.Schwefeldioxid in Verbindung mit Staub							
als Tagesmittelwert							
als Halbstundenmittelwert; drei Halbstundenmittelwerte pro Tag bis zu einer Konzentration von 0,5 mg SO ₂ /m³ gelten nicht als Überschreitung des Halbstundenmittelwertes							
1.3) 0,2 mg Staub/m³ als Tagesmittelwert; dieser Wert bezieht sich auf Staub mit eine Stock´schen Äquivalentdurchmesser kleiner 10μm.							
2. Kohlenmonoxid							
als gleitender Achtstundenmittelwert							
als Einstundenmittelwert							
3.Stickstoffdioxid							
als Halbstundenmittelwert							

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien	Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO2)					August 1989: Luftqualitätskriterien Ozon (O3)						
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO2 in mg/m³				Wirkungsbezogene Immissionsgrenzkonzentrationen für O3 in mg/m³								
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)				
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-				
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060				
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010									
*) als Mittelwert der Siebe	enstunden	mittelwe	rte in der	Zeit von 09.00 – 16.00 Uhr MEZ wä	ährend dei	Vegetat	ionsperio	ode				

Die hi	Die höchstzulässige Konzentration von Schwefeldioxid (SO2) und Staub in der freien Luft beträgt										
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten								
		Schwefeldioxid	in mg/m³ Luft								
	April - Oktober	November - März									
Tagesmittelwert	0,05 0,10		0,20								
Halbstundenmittelwert	0,07 0,15		0,20								
		Staub in	mg/m^3								
Tagesmittelwert	0,	12	0,20								
	Die Überschreitung dieses	s Grenzwertes für Staub an	Die Überschreitung dieses Halbstundenmittelwertes								
	sieben nicht aufeinanderfo	lgenden Tagen im Jahr gilt	dreimal pro Tag bis höchstens 0,50 mg SO2/m³gilt								
	nicht als Luftbe	eeinträchtigung.	nicht als Luftbeeinträchtigung.								

V. Immissionsschutzgesetz-Luft i.d.g.F.

a) Schutz der menschlichen Gesundheit (BGBl. I Nr. 34/2003)

Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)					
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **)
Schwebestaub				150	
PM_{10}				50 ***)	40
	Warı	nwerte in µg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
Zielwerte in μg/m³					
Stickstoffdioxid				80	
PM_{10}				50	20

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 µg/m 3 gelten nicht als Überschreitung.

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001)

Grenzwerte in μg/m³					
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid					20 ¹⁾
Stickstoffoxide					30
Zielwerte in µg/m³					
Schwefeldioxid				50	
Stickstoffdioxid				80	
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)		
Tagesmittelwert	0,5 mg/m³	
Halbstundenmittelwert	1,0 mg/m³	

^{**)} Der Immissionsgrenzwert von 30 μg/m 3 ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m 3 bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m 3 verringert. Die Toleranzmarge von 10 μg/m 3 gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m 3 gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25."

IG-L Überschreitungen:

PM10 Staub

a) kontinuierlich

Tagesmittelwerte>50µg/m3 im Zeitraum 01.07.05-00:30 - 01.08.05-00:00

MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse Anzahl: 1	29.07.2005	59
HALL IN TIROL / Münzergasse Anzahl: 1	29.07.2005	54
GÄRBERBACH / A13 Anzahl: 1	29.07.2005	60
IMST / Imsterau Anzahl: 1	29.07.2005	59
VOMP / An der Leiten Anzahl: 1	29.07.2005	55

b) gravimetrisch

Tagesmittelwerte> $50\mu g/m3$ im Zeitraum 01.07.05-00:30 - 01.08.05-00:00

MESSSTELLE	Datum	Wert[µg/m3]
VOMP / Raststätte A12 Anzahl: 1	29.07.2005	53

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE	Datum	Wert[µg/m3]
VOMP / Raststätte A12 Anzahl: 1	29.07.2005-16:00	204

IG-L Zielwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00 Tagesmittelwert>80µg/m3

MESSSTELLE	Datum	Wert[/m3]	
VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12	05.07.2005 15.07.2005	85 84 91 81	

VOMP / Raststätte A12

29.07.2005

82

Anzahl: 5

IG-L Warnwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00 Dreistundenmittelwert>400µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00

Tagesmittelwert>50µg/m3

 $\label{eq:messstelle} \texttt{MESSSTELLE} \qquad \qquad \texttt{Datum} \qquad \texttt{Wert}[\mu g/m3]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00 Halbstundenmittelwert>200µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00
Dreistundenmittelwert>500µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00
Achtstundenmittelwert>10mg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

IG-L Zielwertüberschreitungen im Zeitraum 01.07.05-00:30 - 01.08.05-00:00
Achtstundenmittelwert>120µg/m3

· -		
MESSSTELLE	Datum	Wert[µg/m3]
INNSBRUCK / Andechsstrasse Anzahl: 1	15.07.2005-24:00	121
INNSBRUCK / Sadrach Anzahl: 6	14.07.2005-24:00 15.07.2005-24:00 17.07.2005-24:00 18.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00	130 140 134 125 142
NORDKETTE ANZAhl: 11	04.07.2005-24:00 14.07.2005-24:00 15.07.2005-24:00 16.07.2005-24:00 17.07.2005-24:00 18.07.2005-24:00 19.07.2005-24:00 27.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00 30.07.2005-24:00	122 141 151 152 148 145 138 134 149 153
KARWENDEL West Anzahl: 8	14.07.2005-24:00 15.07.2005-24:00 16.07.2005-24:00 17.07.2005-24:00 18.07.2005-24:00 19.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00	137 150 151 146 142 131 142
KRAMSACH / Angerberg Anzahl: 5	14.07.2005-24:00 15.07.2005-24:00 17.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00	127 128 126 136 134
KUFSTEIN / Festung Anzahl: 6	04.07.2005-24:00 14.07.2005-24:00 15.07.2005-24:00 17.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00	121 134 141 130 147 146
HÖFEN / Lärchbichl Anzahl: 7	14.07.2005-24:00 15.07.2005-24:00 16.07.2005-24:00 17.07.2005-24:00 18.07.2005-24:00 28.07.2005-24:00 29.07.2005-24:00	125 138 125 140 130 130

ZILLERTALER ALPEN	14.07.2005-24:00	131
ZILLERTALER ALPEN	15.07.2005-24:00	145
ZILLERTALER ALPEN	16.07.2005-24:00	148
ZILLERTALER ALPEN	17.07.2005-24:00	145
ZILLERTALER ALPEN	18.07.2005-24:00	136
ZILLERTALER ALPEN	19.07.2005-24:00	142
ZILLERTALER ALPEN	27.07.2005-24:00	125
ZILLERTALER ALPEN	28.07.2005-24:00	134
ZILLERTALER ALPEN	29.07.2005-24:00	135
Anzahl: 9		
T TENTS / Connection to the control of the control	15 07 2005 24.00	1 2 7
LIENZ / Sportzentrum	15.07.2005-24:00	137
LIENZ / Sportzentrum	30.07.2005-24:00	143
Anzahl: 2		

Überschreitungen der IG-L Informationsschwelle im Zeitraum 01.07.05-00:30 - 01.08.05-00:00 Einstundenmittelwert>180 μ g/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt! Überschreitungen der IG-L Alarmschwelle im Zeitraum 01 07 05-00:30 - 01 08 05-00:00

01.07.05-00:30 - 01.08.05-00:00 Einstundenmittelwert>240µg/m3

MESSSTELLE Datum Wert[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!